A New Basis for Discrete Analytic Polynomials

نویسنده

  • DORON ZEILBERGER
چکیده

A new basis {irk(z)}t.o for discrete analytic polynomials is presented for which the series 2k-o ak7Tk(z) converges absolutely to a discrete analytic function in the upper right quarter lattice whenever lim | ak \" k = 0. Introduction Let Z be the group of integers and consider functions / : Z X Z ^ C such that (1.1) f(x, y) + if(x + 1, y) / (* + 1, y + 1) if(x, y + 1) = 0 for every (x, y ) £ Z x Z . Such functions are termed discrete entire. If (1.1) holds only for (x, y)G G, G CZ x Z, then we say that / is discrete analytic in G. Discrete analytic functions were introduced by Ferrand (1944) and the theory was developed by Duffin (1956) and others. Duffin (1956) introduced the following basis for discrete analytic polynomials (z = x + iy), which he called pseudo-powers. Each pk(z) is a discrete entire function and a polynomial of degree k in (x, y). Duffin (1956) showed that every discrete analytic polynomial can be expressed as a linear combination of these pseudo-powers. Duffin and Peterson (1968) introduced an analogue of the McClaurin series in terms of these pseudo-powers. However, their analogue has the dis-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Galerkin Method for Higher Even-Order Integro-Differential Equations with Variable Coefficients

This paper presents discrete Galerkin method for obtaining the numerical solution of higher even-order integro-differential equations with variable coefficients. We use the generalized Jacobi polynomials with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. Numerical results are presented to demonstrate the effectiven...

متن کامل

Sufficient Conditions for a New Class of Polynomial Analytic Functions of Reciprocal Order alpha

In this paper, we consider a new class of analytic functions in the unit disk using polynomials of order alpha. We give some sufficient conditions for functions belonging to this class.

متن کامل

Some new families of definite polynomials and the composition conjectures

The planar polynomial vector fields with a center at the origin can be written as an scalar differential equation, for example Abel equation. If the coefficients of an Abel equation satisfy the composition condition, then the Abel equation has a center at the origin. Also the composition condition is sufficient for vanishing the first order moments of the coefficients. The composition conjectur...

متن کامل

New Generalization of Eulerian Polynomials and their Applications

In the present paper, we introduce Eulerian polynomials with parameters a and b and give the definition of them. By using the definition of generating function for our polynomials, we derive some new identities in Analytic Numbers Theory. Also, we give relations between Eulerian polynomials with parameters a and b, Bernstein polynomials, Poly-logarithm functions, Bernoulli and Euler numbers. Mo...

متن کامل

New operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative

In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008